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An optimal procedure is established for the reconstruction of the angular
object distribution in a given field of view (FOV), The object is coherently
illuminated and located in the far zone of the receiving aperture. The proce-
dure is "uniformly" optimal in the sense of minimizing the statistical rms
difference between the object distribution, modeled as a random function of the
angular coordinites and its reconstructed image, for each direction belonging
to the FOV. The observable complex amplitude distribution of the field on the | —» avER
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aperture is due in the general case not only to the incident field scattered by
the object but also to background disturbance, or "angular noise'", randomly
distributed inside and outside the FOV, and is affected by ''measurement noise"
that is random errors introduced in measuring the aperture field. The recon-
struction algorithm consists of surnming a truncated ceries of special func-
tions — prolate spheroidal for tne linear case and their generalization for two
dimensional apertures — weighted by appropriate coefficients. These coeffi-
cients depend upon the observed aperture field and upon the relative power
densities associated with the object field and the various types of noise. The
series is truncated to a nuraber of terms ("effective degrees of freedom'’ of
the image) determined through an information theoretical method: each term
of the series, suitably ordered, provides an information gain less than the
preceding one, and the information gain goes rapidly to zero. The relationship
between information transfer and mean-squared error for each term in the
irnage series is established. Numerical examples are discussed.
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Optimum Coherent Imaging of a Limited Field of View
in the Presence of Angular and Aperture Noise

1. INTRODUCTION

In recent years a substantial amount of work has been done on the problem of
image reconstruction from knowledge of the field dis:ribution on a receiving aper-
ture. The incoherent case has been discussed by L, : who concluded that a com-
plete restoration of a sky temperature distribution is possible in principle, despite
the finite size of the aperture. Th~ problem was reconsidered in detail by Buck
and Gustr‘.ncic2 who, exploiting the properties of spheroidal functions, showed that
only a limited number of fun: :ions was useful in representing the reconstructed
temperature distribution. Rushforth and Harr133 onsidered the effect of noise
superimposed on both the object and the image distributions and took intn proper
account il.e advantages givenby thea priori knowledge of the limited extension of the
object in its plane. Toraldo di !-‘r-ancil4 discussed the general question of the
degrees of freedom of an image and pointed out the difference between the coherent
{Received for publication 28 April 1976}

1. Lo, Y.T. (1861) On the theoretical limitations of a radio telescope in determin-
ing the sky temperature distribution, J. Appl. Phys. 3{:2052-2054.

2. Buck, G.J. and Gustincic, Jacob T. (1967) Resolution limitations of a finite
aperture, IEEE Transactions on Antennas and Prop. AP-15, No. 3:376-381,

3. Rushforth, C.K. and Harris, R.W. (1968) Restoraticn, resolution and noise, 4.

Opt. Soe. Am. 58, No. 4:539-5485,
~oa

4. Toraldo di Francia, G. (1969) Degrees of freedom of an image, J. Opt. Soc.
Am, 59, No. 7:799-804.
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and the incoherent case. Bendinelli, et 315 established exprescions for the recon-
struction coefficients—in the presence of measurement noise—that minimize in a
statistical sense the mean square difference between the object and its reconstruc-
tion, integrated over the extension of the object. All those studies are limited to
the two-dimensional case of linear apertures.

In this paper the question of image distribution reconstruction or coherent
illumination is reconsiderea from first principles, without any a priori assumption
of a particular processing system behind the receiving aperture, that is without l
postulating any particular "optical spread function.” The object is assumed to be
located in the aperture far zone. This being the case, the set of spherical waves
constituting the scattering contributions from each point of the obiert can be con-

i

T

sidered locally planar at the aperture. The image reconstruction it therefore
equivalent to the determination of the function of direction characte-:zing the com-
plex amplitudes—referred to the aperture center—of the Plane Wave Spectrum
{PWS) into which the aperture field due to the object can t» decomposed. Because
of its meaning the PWS associated with the object will be denoted as object angular
distribution or simply object function, and mathematically modeled as a complex
random function of the angular coordinates. The complex coefficients for two plane
waves incident from two different directions are assumed to be statie‘ically uncor-

o Lo

related. However, their relative phase relationship is fixed in time. This is
equivalent to considering the coherent case only. It is assumed that the object dis-
tribution of interest is angularly limited to a certain a priori assigned field of view
(FOV), We want to reconstruct its complex values by linear processing of the com-
plex amplitude of the field distribution observed at the receiving aperture. * The
observed values are due not only to the incident field scattered from the object but
also to background interference, or "angular noire”, generated by scatterers from
inside and outside the FOV in the aperture far zone and by "'measurement noise'
locally introduced at the aperture in the measurement process. )

flkidy s Sk
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In this paper a linear reconstruction procedure will be established by using the
methods of statistical estimation. The procedure is "uniformly optimal" in the
FOV in the sense of minimizing the statistical rms difference between the object
distribution and its reconstructed image, for each direction of interest (ratner than

5. Bendinelli, M., Consortini, A., Ronchi, L., and Frieder, B, R. (1974) Degrees

of freedom and eigenfunctions for the noisy image, J. Opt. Soc. 64. No. 11:
1498-1502,

*The situation is similar to that examined by Rushforth and Harriaa for a somewhat i
different situation, since tiey considered the optical property of the system speci-
fied a priori through u point spread function. However, unlike the case considered
in Ref. 3 in this paper all the scatterers are assumed to be in the far zone of the
aperture. Consequently, the background noise in the object plane in Ref. 3 is

replaced by a PWS modeled as a random function of direction and denoted as
"angular noise,"
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the rms reconstruction error integrated over the FOV, as for example in Ref. 5).
The prolate spheroidal functions, for the linear aperture, and their generalizations

for two-dimensional apertures, play a fundamental role in the analysis, as they did

in most of the other related work. In previous work, however, the use of spheroidal
functions stemmed from their being eigunfunctions of the integral equation -defining
the imaging operation-whose kernel was the optical spread function. Their rele-
vance to reconstruction is, in a sense, far more fundamental. This was recognized
by Toraldo di l"'rancia4 and Buck and Gustincic. 2 The appearance of spheroidal
functions and their two-dimensional generalizations (discussed in this paper for
relztively arbitrary geometries), is shown to be a natural consequence of the struc-
ture of the inhomogeneous integral equation defining the statisticallv optimal linear
processing of the observed aperture field. The reconstruction algorithm consists of
summing a trunicated series of functions (prolate spheroidal or their generalization)
weighted by coefficients depending upon the observed aperture field and upon the
statistical second moments of the object distribution process and of the various types
of noise. The series is truncated to a number M of terms ("'Effective Degrees of
Freedom'') determined through considerations of information theory. Fach term of
the series, suitably ordered, provides an information gain less than the preceding
one. The number M is such that no advantage is obtained by adding additional terms
to the series for the image reconstruction. For each additional term the vncondi-
tional entropy and the entropy conditioned to the presence of a given random scene
become asymptotically equal. Hence the information gain tends to zero. Ir terms
of rms errorc integrated over the FOV this fact means the following: the integrated
rms error associated with a term of order i > M in the reconstruction series is
essentially equal to the variance of the corresponding terms of the expansion of the
random scene integrated over the FOV. Therefore, those terms in the series con-
tribute only to noise in the reconstructed image. The number M is proportional to
the FOV-aperuire prudi:~t. unless very low aund possibly unrealistic values of dis-
turbance are present. In such cases the possibility exists of an improvement of the
reconstruction accuracy beyond the limits suggested by the classical optical theory,

The domain of application of the reconstruction method here proposed is re-
stricted to microwave frequencies. In fact, the assumption that the field can be
observed at all points of the aperture implies that the field is a classical electro-
magnetic field, which requires a large number of quanta per degree of freedom.
This condition is encountered at optical frequencies only with extremely intense
fields.
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| 2. MATHEMATICAL MODEL AND PRELIMINARY RESULTS 1
é |
4 2.1 Object Function and Angalar Noise 4

We will consider apertures and FOV's which are generally two-dimensional.
It will be straightforward to simplify rotation and results in order to deal with the

simpler case of linear aperture,.

Let A be a receiving aperture on the x,y plane (whose area will also be indi-
cated by the same letter A), It is expedient for mathematical reasons to assume
that the aperture has a point symmetry with respect to its center. This mears, if
the origin is assumed coincident with the aperture center and an aperture point is
located at (x, y), that there exists another aperture point at (-x,-y). Except for
this constraint of point symmetry, the geometry is arbitrary.

L.et a position vector on the aperture plane be given by:

X = xk+y¥, (n

% and ¥ being unit vectors in x and y directions. The rectangular coordinates in

the wavenumber plane are related to the angular coordinates of a standard spherical

system as follows: 3
u = -?sinﬂcos O (2)
= 2" 5in o si (3) J
v = sinf sing,
A

Nk £

where ) is the wavelength. A position vector ir the u, v plane is conveniently intro-
duced:

a

ux+ vy. (4)

o

Let A(x) be a function equal to unity in the points of the aperture and zero elsewhere,

1 for xe A
Alx) = . (5)
0 for x¢ A

i bt % e S i el i

the "'aperture function" is defined as follows

Y

ot = [ | Amel¥Xa?, (6)
Ut oo
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where, of course,

wx = ux+vy,
and d?‘z is the element of the area in the x, y piane, The field of view is defined as
the domain S of the u, v plane, inside which is located the object distribution to
he reconstructed. S is assumed to have, like A, a point symmetry about its center
in the u, v plane. The same letter S will denote the area of the FOV in the wave-
number plane. Also it proves convenient to introduce the function:
for ues

1
S(u) A . )]
0 for uds

I.et the object angular distribution be a random function go(g). different from
zero only in S, which will be called the object function. The function go(E\ is the
complex amplitude (referred to the aperture center) of the PWS representing the
object. As mentioned in Section 1, we assume that the values of go(g) for two differ-
ent arguments are statistically uncorrelated. This physically means, intuitively
speaking, that in the FOV we have no a priori information of how the object function

in a certain direction u of S affects probabilistically the value of the object function
in a neighboring direction. Thus, if we denote the statistical average operator by
E,

E [ S(u) g, (w Sty) go(!)] = 40 8- P SW, ®

where v, like u, represents an arditrary direction and 8(u) is the two-dimensional
impulse function. PS has the physical meaning of 4«2 times the power per unit
aperture area incident from an unit area of wavenumber plane.

A random function Nl(g). different from zero only in the domain S of the u, v
plane, is introduced in order to represent the WS associated with background
coherent disturbance, or angular noise, incident from directions belonging to the
FOv, NI(E). like go(g). is an uncorreiated random function homogeneous in S.

Hence:

£ [ St N s N,(!)] < 4o? P Si) 8(u- v, (9

Noise is present outside the FOV. It may simply mean that the part of the scene
outside the FOV is of no interest and is therefore considered a disturbance. Again
such a noise Nz(g) is uncorrelated:

>
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g [1-sw] w, [1-sw] Nyw ; -4?p, [1-swlsw-v. a0 B

l

and a reasonable assumption is that the statistical cross correlation between 80(9)'
N1(2) is zero for all values of the arguments.

In the analytical model expressed by (10) the angular noise extends throughout
the whole wavenumber plane, although of course NZ(E) should be zoro outside the
circle of the wavenumber plane corresponding to real directions, that is, outside
the ""vig.ble space' G, defined as the set of points of the wavenumbers plane such
that

12152"”-

ot ey ¥ rdy e e 0

The assumption (10} however is useful in simplifying the subsequent development,
and has been adopted in most of the previous work in this area. In Appendix C, it
will be shown that negligible error is committed by assuming the validity of (10),
because in the wavenumber plane the visible space has a much greater extension
than the FOV we are looking at.

2.2 Aperture Field and Aperture Noise

The received aperture field is the superposition of the plane wave spectra
representing the object and the angular noise. Therefore in our scalar approxima-
tion it takes the form of a Fourier Transform:

40 4o
(
o = A -ty [ [ ) 5 [g (w + N (u)]
- T 4n° "o ew - o= 1=
- [1 - S@] Nylu : e WX 42, , (1

which defines f(x) as a random function. If§, like x represents a point of the aper-
ture from (9 to 11), it easily follows that: ‘

+4e0 4w

F [r(xu"(a] = A [ [ St (Pge Py)e [1 -S(u)] Pz'ejﬂ""“dzu. f
- il - et el = B ’ =
(12)
that is,

3
. ’ _ L opore . . ] ;
v [!(3(_) f (Q] = A(x) AE) [ 4—".‘, 0§ (5 _g) ( PS+ P1 Pz) + P2 b(x -5)4 5 i
13 3
where the characteristic function of the FOV has been introduced: : 3

10
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4% 4@
oglx) = [ | swelZZ dzg. (14)
-0 =00

To complete our model let us assume that additive noise n(x) is present on the
aperture. This means that "'measurement errors'' are present in the observation
of the aperture field distribution. In practical cases this noise may be of a multi-
plicative nature. However, the additive model simplifies the mathematics and is
close to reality in many cases. Thus .ne "observable" field dist-ibution on the

aperture is
olx) = f(x) + n(x) , (15)

a random function havin, zer: mean, and we assurac that the measurement noise is

uncorrelated:

E AW AQ) n@n'®) ] =02 A 8- £ . (16)

This assumption is made customarily for mathematical convenience, 8 and leads

to the well known difficulty of implying ar infinite noise power for a continuous
aperture., The difficulty is merely formal however and disappears if the rms com-
ponents of aperture noise with respect to a system of orthogonal functions are con-
sidered (see Avpendix C). Since the object function and the nois2 are uncorrelated
one easily obtairs by recalling (9 to 11) and (15):

E [0(5) oﬁ(_i_)]

= Ax) Ag) l—l-z Ug(!'ﬁ) (PS+ Pl -Pz) + (Pz*anz ) 8(x - &) . (N
4 E

3. LINEAR ESTIMATION OF THE OBJECT FUNCTION

3.1 Statement of the Problem

We want to estimate the object function go(g) by linear processing of the observ-
able aperture field distribution o(x). Hence the estimator 2(u) will have the general

form of linear transformation:

2w = Sw [ [ Hu, x ox) d’x, (18)
) A5 L g siern ¢ n

11




where o(x) is given by (15) and the kernel H(u, x) is to be determined. To accom-
plish such a task we require that for any direction u belonging to the FOV, the
statistical average of the rms estimation error be minimum:

2

2
e = E | |pw-g (| I = min. (19)

As shown in Appendix A this leads to the integral equation:

S{u) A(x) ejg‘i

2
P . -P P.+0o
1 2\ 1 2 S " "n
= S(u) A(x) (l+ ) oo{x - £) H(u, &) d°¢ + H(u, x) | ,
s |(1+ ) 2 S e me o g s
(20)
whose solution for H(u, x) will provide the optimnm linear processing scheme.
3.2 Optimum Processor
To solve Eq. (20} consider the associate homogeneous eigenvalue equation:
21 _ 2
A Y, (x) i ffA oglx - £) $ &) d%. (21)

The kernel is symmetric real and positive definite, therefore the eigenvalues are
positive numbers. The eigenfunctions can be chosen to be real and constitute an
infinite dimensional set complete and orthogonal in A, They will be ordered for
increasing values of xi. starting from i = 0, We will normalize them to unity:

2
1] fA b, (x) ¥ (x)dx = 8 . (22)
Let:
¥
H(y, x) = o a,(u) ¥, (x) (23)

and insert this expression into (20}, obtaining

S(u) Ax) eI 2% :
3 :
P -P,, = P,+a’ w
_ 1 2 2 n
= S Alx) I(l oT) ‘;‘o 3@ A )+ Ept ;§o a,( oi(g! (24)

12
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To find the coefficients ai(g) we need to introduce the set of functions:

viw =[] 4w e jurx 4% (25)

which because of Parseval's theorem form an orthogonal (although not complete)

set on the wavenumber plane:

o 400
ff \lﬂ(u)\l'(u)du=4n 8y (26)
- 00

- ot

A brief discussion of tl.e properties of the set (\l‘i(g)) is given in Appendix B. Now
multiply both the sides o1 (24) by (’k(lc_) and integrate the aperture A, By using
orthogonality and the definition (25):

P P + i
S(u) ¥, (w) = S(w |{1+ -—p—)ak(u) "k"'T— a, (u) (27
and thus
Stu) ¥ (y_)
ak(g_) = r—T P+ o‘ 3 (28)
(l +—15_") )‘k j_
The function H(u, x) therefore is from (23):
@ ¥, (v (’ (x)
el
R :-o L) Pz oy @
= (l + —F—S ) A‘k +
Hence the estimator of the object function is found from (18) and (29) to be:
o i' (u)
a - . 2
gw = s Y b (x) o(x) d°x , (30)
- ~ k=0 P 4? Jf k& -7

2
e pt) o+ 2

completing the formasl solution, The estimate (30) will be called the best image or
simply the image of the object function go(y_).

In any practical reconstruction algorithm the series (30) is truncated after a
limited number M of terms. In the next section the determination of the number M
will be treated by considering the information transfer from object to irnage

13




sssociated with each term of (30). It will be shown that unless measurement and/or
argular noise have extremely low values, essentially no advantage is obtained by

considering terms of order greater than N where N is defined as
N = smallest integer > AS/4m2 . (31)

Such an information theoretical approach has been preferred to the alternative ap-
proach consisting of minimizing in some sense the reconstruction error. In fact
the 1. .t¢« r method leads to certain mathematical convergence difficulties as a
consequence of the assumption of a flat spectral density for go(g). as discussed
briefly in Section 5. Also the method used here provides an insight into the
mechanism of information transfer from object to image.

4. INFORMATION TRANSFER FROM OBJECT TO IMAGE

4.1 In’ormation Gain Associsted with the Observable Quantities

In the processing scheme described in the previous section, the quantities

o, = j“f\ 8 (x) olx) a%x (32)

are the "'observables,'' and are random variables whese statistical properties are
induced by thesc of the random function o(x). Since o(x) has zero mean, we have

also
E[Oi] =0,

The second order moments of the observables (32) are found by using the ortho-
gonal properties of the set of functions (i’i(i)) , and the expression (17}. In this
way ore obtains:

* 2
= A -
E |0, 0, ] [xi Pg* 4 Pa (1-4)Pyeo- | 8, . (33)

Thus the obearvables are uncorrelated. Also because of their definition (32), they
are intugrals of random functions. Thus by invoking the central limit theorem, we
may assume that their probability densities are normal, The same argument can
be made in regard to the conditional probability density assuming a certain object
function go(g). For the unconditional probability density the variance is from (33):

14
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2

2 .
ci=AiP +AiPl+(l-Ai)P2+6n. (34) i

S

and, for the conditional probability density assuming go(g). the variance is:

2 _ ) 2
cig' )«i Pl + (1 )«i) P2+ o, (35)

that is the variance of Oi‘ due only to the various types of noise.

For each observable Oi‘ the entropies associated with the unconditional and
conditional probability densities are found under the assumption of normal distribu-
tions. Thus, for the unconditional entropy we have, g by using here base 2 log-

arithms:

HU) = log, (o, Y27) + gy (36)

3

with &, given by {33). For the conditional entropy assuming go(g) we have similarly:

o 1

with "gi given by (35), It is known that for a continuous probability density the
entropy can be defined to the extent of an arbitrary additive constant. This, how-
ever, does not create any problem if one deals with a difference of two entropies.
The information gain associated with the observable Oi‘ i8 in fact equal to the dif-
ference of the two entropies (36) and (37), that is,
. . o2
l.l = H() - Hg(l) = log2 O—gT 5 (38)

or, recalling (34-35):

2
(1+P1-P2) A+P2+an
Ps /| i T Fg

1
1= d1og ) (39)
i 272 P, - P, P +a:

—PS_Ai‘ _.PS__

6. Woodward, P.M. (1953) Probability and Information Theory, with Application
to Radar Pergamon Press, London, Chap. 1, pp 21-25.
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Since the )«i‘s are a monotonic sequence decreasing with i, with a step behavior
when i reaches the value N given by the aperture - FOV products (31) (Appendix B)

we have:

lim I.=0, (40)

i-»o0 L

and an asymptotic expression for Ii is found to be:

L =i ik log.e (41)
R e SEo" -
2+°n

Equation (41) shows that the information gain is asymptotically proportional to the
characteristic number )«i associated with the ith degree of freedom multiplied by a
suitably defined signal to noise ratio. Practically, unless the signal to noise ratio
is very large, the effective number of degrees of freedom of the image, that is,

the number M of the reconstruction terms, can be chosen equal to N in (31), be-
cause terms of higher order carry essentially no information. This conclusion is
corroborated by the reconstruction error analysis in tie next section, and by numer-
ical results given in the sequel.

4.2 RMS Reconstruction Error Averaged in the FOV.
Informational Compared to Statistical Approach
It is shown in Appendix B that the set of functions {\lfi(g)) is orthogonal and
complete in S, Thus, through a standard procedure, we can represent the object
function by the expansion:

L
1 * 2
g (w="Y V. [[ ¥ (g () d%. (42)
o |=D 41’2Xi i - jfs 1 = %0 = -

Equation (42) is obtained without resorting to any statistical consideration. However
it could have been obtained, less directly, through an application of Parseval's
theorem to the integrals in Eq. (30) for the estimate, in the limiting case of absence
of noise:

e “=P =P,=0, (43

This means that in the ideal conditions of Eq. (43) the object function can be exactly
reconstructed in principle, despite the limited size of the aperture. This result is
perhaps surprising, but well established, and a brief discussion of this point is given
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in Ref, 4. It is not of practical interest because, as soon as any random disturb-
ance intervenes, a very different conclusion is reached. In this section we will
consider the rms errors associated with each term in the estimate (30), and we will
show that for terms for which the observables (32) carry zero information, the
reconstruction error is equal to the a prior: variance of the randon object distribu-
tion. The result shows the equivalence of the informational and statistical approach
in establishing the number of terms necessary in the reconstruction procedure (30).

Consider the rms reconstruction error averaged in the FOV, defined

2_pf
e, E' 'US

2
g, - ghw dzg} ! (44)

In order to avoid complicated and after all unnecessary convergence difficulties, we
assume for the moment that go(_l_x_) is represented satisfactory by the series (42)
truncated to a finite number of terms. By using (B4) of Apnendix B, (30) and (42),
we can write (44) as :

2 2
2 5 |ffA b(x) ox) d°x S % g w d®u
e = Z 4n°2 E - - y
a T ! P -P P, o 49,
1 1 2 2 n i
e o/ R
S S

» (45)

where the number of terms of the series for the time being is left unspecified. By
applying Parseval's theorem to the first of the integrals in each term of the series
(45) and recalling that the random object function is uncorrelated with the disturb-
ance, one obtains through simple manipulations:

2
Pl-sz P2+on
P itTrP
el= 4n?p Y35 5 . (46)
a S .- -3
i P, - P, P, +o
O ) B R
S g S

By recalling (39), the expression of the rms error {46) turns out to be

-2
i

SZz | (47)
1

e2=4'2P
a

According to the discussion of Section 4.1, the information associated with the higher

+terms of the reconstruction series is essentially zero. For such terms Eq. (47)
consistently shows that the reconstruction errors tend to a constant, proportional
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to the density of power per aperture unit area and per unit area of wavenumber
plane assnciated with the object function. A further insight on thz meaning of Eq.
(47) is obtained by notng that the rms of any term of the series Eq. (42) for the
object function integrated in the FOV is:

law] 2, 2 |2

P d“u ffs ¥ () g () dy = 4n“ P, (48)

(™)

independent of the index i. It can be established that Eq. (48) is also equal to the

asymptotic value of each term of Eq. (47) when the index i tends to infinity (and I
therefore tends to zero)., This means that the integrated rms errors associated
with higher order terms in the reconstruction series are equal to the a priori
integrated mean squared value of the object function itself. Thus adding terms
carrying zero information does not improve or deteriorate the average mean
squared error of the reconstructed image. Again we reach the conclusion that, not
unexpectedly, the information theoretical and statistical appro. ches are equivalent
in expressing the circumstance that the uncertainty associated wvith higher order
reconstruction coefficients is equal to the z; priori uncertainty of the corresponding
terms in the representation of the random scene. These terms are therefore
useless in the reconstruction procedure,

S. PARTICULAR CASES

Two important particular situations will be now considered:
(a) Imaging a Limited Sector of a Wide-Angle Random Scene

In this case we assume that the aperture receives energy from a statistically
homogeneous random scene, only a limited part of which - the one belonging to the
FOV - is actually of interest. This case can be modeled by assuming that go(g) and
NZ(E) are different parts - inside and outside the FOV - of the same random process,
so to speak. Consequently we assume in our mode! that Nl(g) is identically zero.
Thus:

S 2 (49)

The reconstruction procedure, Eq. (30), is in this case:

2w = Sw— ; W ff vio otx a’x. (50)
o A
n
1+
L
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Equation (50) shows that the re:onstruction algorithm docs not depend upon the
ratio Ps/anz. which appears in 2 scale factor. In other words the form of the
estimator g(u) is independent of the severity of the measurement errors and of the
power received per square meter >f aperture. However the measurement error
affects the information transfer from the scene to the image, which for the ith
reconstruction term is from Eq. (39):

I =18 1+-p§ (51)
i =708 ——— -
n

1-A 4+
115g

In the next section we will see that for this case the optimal reconstrurtion proces-
sor ig equivalent to an isoplanatic optical system.

{b) Objects in the FOV Immersed in a Wide-Angle Background of
Angular Noise

Assume:

P, =P,=P (52)

The reconstruction algorithm is:

4.(u) )
2w = s Y — [ b0 O d%x, (53)
T Poen’ "A s = =
x‘o_p.s__._

which does depend upon the level of background noise and measurement noise with

respect to the object power., The information transfer is from (39):

2
P.+0O

1
= - )
I * 5108, ——————y—, (54

and goes rapidly to zero for i > N,

A numerical example is provided to clarify the meaning of the theoretical re-
sults obtained.
Example:

Consider the one-dimensional case of a linear aperture of length 2a. The angu-
lar extent of the FOV is 203’ thus in the wavenumber axis its extent is:

19
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2u = 22 gy

8- = TtYg

The one dimensional equivalent of (31) is:

2a 2us 2_3

N = smallest integer = —5=— = 3 2 gin Os J

Put:

272
¢ = = smBs.

and assume for our numerical example:
c = 8, thatis, N = 5,

The characteristic Eq. (21) in the monodimensional case becomes the eigenvalue
equation for prolate spheroidal functions, with parameter c. The first eight eigen-
values for i = 8 are listed in Table 1.

The information transfers associated with the various terms in the reconstruc-
tion series for cases (a) and (b) considered above are now numerically evaluated.
Case (a).

For various values of the ratio F'S/an2 the information contents ii of the various
terms in the image reconstruction are listed in Table 2. it is apparent that the ii's
for i > 4 decrease very rapidly. In fact 15 is already negligible. Notice the weak
dependence of the higher terms of the image series upon the signal to noise ratio.
As expected from the theoretical considerations, five terms only carry practically
the total information available.

Case (bl

In Table 3 the reconstruction coefficients for case (b) have been listed, normal-
ized to the first (i = 0) for various values of the approoriately defined signal to
noise ratio. The information transfers are listed in Table 4. Again we reach the
conclusion that N = 5 terms are sufficient for the optimum reconstruction for small
or moderate signal to noise ratios. However for a signal to noise ratio of the order
of 30 d3 or greater the possibility of a moderate increase in the accuracy of image
reconstruction emerges. An inspection of Table 4 shows that ls. ls. and i7 are not
negligibie when the signal to noise ratio is equal to 103.
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6. DISCUSSION AND FINAL REMARKS

As customary, in our treatment the scalar approximation has been assumed.
For limited FOV - ten degrees or so - it is believed that no substantial error is
committed. On the other hand the mathematical comnlexity is substantially re-
duced, because the analytical machinery of double orthogonal functions can be
applied.

The physical reason why higher terms in the series (30) are of little or no use
in the reconstruction algorithm stems from the fact that the "energy'' associated
with the functions Wi(g) is essentially confined withinthe FOV fori < N, and outside for
i > N (see Appendix B). Thus nigher order reconstruction terms contribute little
to a faithful reproduction of the random scene inside the FOV. On the other hand
by applying Parseval's theorem to the integrals in (30) it is seen that higher order
terms are those maximally affected by the angular noise incident from outside the
FOV, To get a better heuristic insight of the nature of the reconstruction algorithm
consider the case (a) of the preceding section. In this case we singled out the
sector S - the FOV - from a wide angle random scene. Truncating the appropriate
estimator (50) 1o N terms, (N being the smallest integer greater th.n the aperture -
FOV product), or letting the sum be extended to infinity yields informationally equi-
valent expressions as follows from the discussion of Section 4. We invoke now the
representation for the aperture function (easy to establish):

(-]
1 5 x
ua'd = V)= 2o W.() ¥, (v) (55)
ASAS ?i:O ==

valid for any u, v, and uniformly convergent for u and v both belonging to S. 7 By
taking the upper limit of the sum in (50) equal to infinity, by applying Parseval's
theorem to the various integrals, and interchanging the sum with the integral, one
gets (neglecting a constant factor):

40 4@

- 1 : 2 .
2w = S(u) = f_w J_w @ lu - v) Oly) d°y , (56)

where

O = [go(gn Nl@} S(w) + Ny [1 - sms}

+ ff n({) ejE'5 25 (57)
A

7. Hildebrand, Francis B, (1965) Methods of Applied Mathematics, 2nd Edition,
Prentice Hall, N.J., pp 314-315,
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is the angular distribution of the incident field plus an equivalent angular measure-
ment noise—the last term in (57). Equation (56) has a simple physical interpreta-
tion. For case (a) the optimal processing is independent of the ratio PS/crn2 and is
equivalent to the operation performed by a clear, atorration free (isoplanatic)
optical system, with '"point spread function" equal to the aperture function Ta (),
the observed output being limited to directions belonging to the FOV.

In different cases, like (b) in the previous section, the optimal processo: de-
pends upon the a priori knowledge of signal-to-noise ratio. However, because of
the cutoff properties of )li. it can be inferred that, only when the noise is very
small, an improved restorution is obtained by using the optimum processor instead
of the optical operation (56).

To conclude these remarks we want to establish an approximate but very inter-
esting expression for the total information that can be extracted from a limited FOV
in the presence of angular and measurement noise. By invoking the cutoff property
of the characteristic number )\i. we assume that the actual values )\i can be approxi-

mately replaced by 1 for i < N, and by 0 for i > N, Also assume [see (31)}):

~ AS
N - .
PR

Then from (39) we obtain fer the total 1aformation 1:

P
~ AS 1 S
[-_2.210g2(14_ﬂ),
4n P2+on

which closely resembles the classical expression for ths information transfer on a
noisy channel. In the present case the procuct aperture FOV replaces the bandwidth-
time product of Shannon's formula.

e
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Appendix A

The Equastion for the Object Function Estimator

Let

H(u, x) = HO(E'ﬁ) + 7 Hl(ﬂ'ﬁ)' (A1)

where Hn(g.g) is the kernel satisfying (18-19), H),(E'E) is an arbitrary function,
znd 7 is a small quantity, By recalling (19) we obtain:

=0, (A2)

because of (A1) and the meaning of Ho(E'i)' Thus from (A2):

I

E-‘[S@ g W — s [ {\ H (5,2 ofx) ¢%x ] f {\ H) (.8 o) a% [ - a9

l

Because Hl(g.gg) is arbitrary, (A3) is equivalent to

* ®
sw E [g,@o ®] = sw [f B wxE[oxo® ] a% . (A4)
3 A
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By taking into account (16-17) we obtain:

400 400

A(E)—z JIswe [gw g w] YL 4%y = swaw)
400 400 -
x _{([:(y Ho(u, x) [ 4—12 rglx - £) (Pg+ P - Po)+ 8(x - £) (P, +a? | d,
(a5

or because of (8):

S A®) Py eI 24

P+P
_-—z-——ff (x - )H(u.x)dx+(P + 0 %) Hwd

= S(u) A@)

Dropping the subscript 0, not having any particular meaning, and interchanging the

roles of x and {, Eq. (20) is obtained.
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Appendix B

Some Properties of the Functions ¥ (u)

By using the definition (25) and Fourier Transforming (21) we find:

1 2
A \Pi(_q)=4? f£ malu - V¥ (v) dY, (B1)

an integral equation with the same form as (21), and having identical eigenvalues.
Thus the set {\Pi(g) } is complete and orthogonal in S. In order to find the normal-
ization of \Pi(g) in S, consistent with (25), let us consider the integrated product:

* q
[ v w au =L d%u I,y a’x 11, %@ Jux -8 2% (B2)

By interchanging the order of integrations in the left side, one obtains:

e

. ,
ffs Y, wd%- f_& v (x) a%x ffA rglx - £) v () % . (B3)

By invoking (21-22) one concludes that:

-

P, :
: ffs Yo ¥, d =4t s (B4)

e
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Thus (25) and (B4) show that the functions \Pi(g) form a double orthogonal system,
a generalization of a known property of the prclate spheroidal functions. Also
from (25) and (B4) by using Parseval's theorem:

- 2
ffslwi(g) a%u
N o= s - . (BS5)
I IE I\Pi(g) a%u

that is the characteristic value X, is the fraction of the total "power'' associated with
\I‘i(g). which belongs to S. Since ihe wi(g) are real it follows from (25) that:

*

Yw = ¥ (. (B6)

The eigenvalues A of (21), or (B1), are positive numbers lesser than unity. It can
be shown that as a consequence of the representation (55) for the aperture function

the following property holds:

oC
_AS
Eo ) = - (B7)

that is the sum of the eigenvalues—trace of the integral operator in (Bl1)—is conver-
gent and is proportional to the aperture - FOV product. A fundamental feature of
the numbers )\i is their cut-off property. If they are ordered with increasing values
of the index, their values are close to unity for

= ™ AS
A, =1, “theni < integer part of—z ) (B8)
1 4e

and close to zero for greater i's:

-~ AS
A, = 0 for i > integer part of 0 (B9)
i 4'2

This fundamental property has been pointed out by Slepian and Pollack  for the one-

dimensional case (that is, for the prolate spheroidal functions) and has bcen shown
LR

to be valid for the general case by L.andau.

#Slepian, D. and Pollak, H.P. (1961) Prolate spheroidal wave functions, Fourier
analysis and uncertainty — 1, Bell System Tech, J., 40:43-63.

*¢L.andau, H.J. (1967) Necessary conditions for sampling and interpolation of certain
entire functions Acta Mathematica, pp 37-52, i
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Appendix C

Power Associated with Each Observable

The terms (34) are the powers associated with the observables Oi's. The total
power received by the aperture from the object function can be found to be by, using
(B7):

_ . AS
Total received object power = Pg -4—'2 0 (c1

and a similar expression, with Pl replacing Pq. holds for the total received power
associated with Nl(g). On the other hand the total angular noise power received
from outside the FOV is:

2
o’ (2—;’) -8 I ; (C2)

Total power from outside FOV = 'A!
4r

having here taken into proper account the extent of the visible space.

Assuming correctly the noise N2 limited to visible space G, rather than extend-
ing to the entire wavenumber plane, amounts to replacing in (17) and (A5) the
symbolic function §(x - §) with

2w
3 J |x-_§|,
w-p 2 4 5 Ix
00(5-5)=f{; eJ2x -5 g%y & =T . (€3
3
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We now resort to qualitative reasonings. If we consider a number of terms close

to N given by (31), the functions wi(z) are slowly varying on the aperture (in the one
dimensional case they have a number of zeros equal to their orders). On the other
hand the function (C3) has a peak much sharper than that of as(z). given by (14),
under the assumption of S<<G. Therefore no substantial error is committed by
reriacing (C3) by a delta function in integrals involving the product of (C3) with
wi(z). if i is not substantially greater than N. In fact, more rigorously it is possi-
ble to show that, for a given product AS:

. 1 2 2
lim Y. (x) o (x=-£)-4n b(x-E)] d°x= 0.

The measurement noise power for each degree of freedom is found to be

E [ ffA ¥;(x) n(x) a%x ffA ¥ @ nl(_§) d2§] £ cnz.

becauge of (16) and (22). Thus cnz is equal to the rms measurement noigse associ-
ated with each observable Oi' furnishing an alternative interpretation of its physical
meaning., A strictly related discussion by Yaglom can be found in his book on the
theory of stationary random functions., *

*Yaglom, A, M, (1965) An Introduction to the Theory of Stationary Random Func-
tions, Prentice-Hall, N,J., pp 207-213.
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